Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protoplasma ; 260(3): 935-947, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36445484

RESUMO

Mabea fistulifera, a species pollinated mainly by diurnal and nocturnal vertebrates, presents pendulous inflorescences with approximately 70 pairs of nuptial nectaries (NNs). These NNs exude voluminous nectar drops that defy gravity, remaining exposed at the inflorescence for more than a day. We aimed to investigate the NN secretory process and the unique nectar presentation of M. fistulifera. NNs and their exudate were collected at different secretory stages and submitted to structural studies and chemical analysis. The epidermis is devoid of stomata and constitutes the main site of synthesis for non-sugar metabolites found on nectar and nectar-coating film. Nectary parenchyma presents few small starch grains, and vascular strands are distributed until the nectary parenchyma cells close to the epidermis. Vascular tissues at the nectary parenchyma seem to provide sugar and water for the nectar. A film composed of lipids, alkaloids, and proteins covers the nectar drops. The film guarantees the nectar offering for several hours, as it minimizes water loss and prevents falls by gravitational action. The release of large nectar drops is intrinsically linked to the NN anatomical traits and the exudate composition. Low sugar concentration and predominance of hexoses in M. fistulifera nectar are essential for maintaining nectar exudation for many hours, which results in the visitation of a broad spectrum of pollinators.


Assuntos
Euphorbiaceae , Néctar de Plantas , Animais , Néctar de Plantas/química , Flores/química , Euphorbiaceae/metabolismo , Via Secretória , Carboidratos
2.
J Equine Vet Sci ; 116: 104049, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35716836

RESUMO

The present study was conducted to investigate the aqueous extracts of Azadirachta indica (AZN), Cnidoscolus angustidens (CNA), and their combination (MIX) at dosages of 0-, 0.6-, 1.2-, and 1.8- mL for their ability to reduce greenhouse gases and fermentation profiles in an in vitro study using horse feces and a nutrient-dense diet (as substrate). The quantity of greenhouse gas and fermentation profiles were determined in in vitro incubation for 48 h. Extracts of AZN, CNA, and MIX reduced total gas production of the incubated and degraded substrates in a dose-dependent and time-dependent manner. Production of CH4 was reduced (P < .05) by 4.41% to 54.54% with the incubated substrates and by 1.16% to 61.82% with the degraded substrates. However, AZN and MIX reduced (P < .05) CO by 4.43% to 12.85% with the incubated substrates and by 0.70% to 16.78% with the degraded substrates. In like manner, the plant extracts and combination reduced (P < .05) H2S production in a dose-dependent and time-dependent manner by 18.37% to 67.35% with the incubated substrates and by 8.51% to 67.23% with the degraded substrates. Extracts maintained pH within the normal range, reduced dry matter digestibility and metabolizable energy, and improved (P < .05) concentration of short chain fatty acids. Overall, aqueous extracts of AZN and CNA and their combinations had a positive effect on reducing the greenhouse gas production with no deleterious effect on fecal horses' fermentation activities.


Assuntos
Azadirachta , Euphorbiaceae , Gases de Efeito Estufa , Animais , Azadirachta/metabolismo , Dieta/veterinária , Euphorbiaceae/metabolismo , Fezes , Gases de Efeito Estufa/metabolismo , Cavalos , Rúmen
3.
Molecules ; 27(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35565998

RESUMO

Macaranga tanarius (MT) and Syzygium jambos (SJ) are pharmacologically reported to have anti-oxidant, anti-inflammatory, and anti-diabetic effects, and can be neuroprotective agents. Our previous work revealed that MT and SJ exhibited 76.32% and 93.81% inhibition against acetylcholinesterase (AChE) at 50 µg/mL final concentration in their ethyl acetate and hexane fractions, respectively. This study was aimed to investigate the bioactive constituents of MT and SJ and their molecular mechanism toward AChE inhibition. Bioassay-guided isolation afforded prenylflavonoids 1-3 from MT and anacardic acid derivatives 4 and 5 from SJ that were confirmed by NMR and MS data. Compound 5 exerted the strongest anti-AChE potential (IC50: 0.54 µM), followed by 1, 4, 3, and 2 (IC50: 1.0, 2.4, 6.8, and 33 µM, respectively). In silico molecular docking revealed 5 formed stronger molecular interactions including three H-bonds than its derivative 4 based on the saturation of their alkyl chains. The addition of a five carbon-prenyl chain in 1 increased the number of binding interactions, justifying its greater activity than derivatives 2 and 3. This research reflects the first report of AChE inhibitors from these species, thereby adding pharmacological values to MT and SJ as potential remedies in neuroprotection.


Assuntos
Euphorbiaceae , Syzygium , Acetilcolinesterase/metabolismo , Anti-Inflamatórios , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Euphorbiaceae/metabolismo , Simulação de Acoplamento Molecular , Syzygium/química
4.
Genes (Basel) ; 13(3)2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35328004

RESUMO

The ω-3 fatty acid desaturase (FAD3) gene encodes a rate-limiting enzyme in the synthesis of α-linolenic acid. In this study, homologous cloning was used to obtain the full-length sequence of the PvFAD3 gene of Plukenetia volubilis. The full-length DNA sequence was 1871 bp long, with 8 exons and 7 introns. The structural analysis of the amino acid sequence revealed that the PvFAD3 protein contained three histidine-conserved regions and an endoplasmic reticulum retention signal. The real-time reverse transcription-polymerase chain reaction performed for determining the expression patterns of the PvFAD3 gene in different tissues of P. volubilis showed that PvFAD3 expression was highly expressed in the fast oil accumulation stage of seed. The analysis of subcellular localization assay in epidermal cells of tobacco (Nicotiana benthamiana) leaves showed that the PvFAD3 protein was mainly localized in the endoplasmic reticulum. Seed-specific overexpression vectors were constructed, and Agrobacterium-mediated genetic transformation was performed to obtain transgenic tobacco plants overexpressing PvFAD3. The results of fatty acid assays performed using harvested seeds showed a significant increase in α-linolenic acid content, a dramatic decrease in linoleic acid content, and an obvious increase in oil content in transgenic tobacco seeds. Collectively, the PvFAD3 gene of P. volubilis was confirmed as a key enzyme gene for α-linolenic acid synthesis; thus, indicating that the PvFAD3 gene can be used for fatty acid fraction improvement in oilseed plants.


Assuntos
Euphorbiaceae , Ácido alfa-Linolênico , Euphorbiaceae/genética , Euphorbiaceae/metabolismo , Ácidos Graxos/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Sementes/genética , Sementes/metabolismo , /metabolismo , Ácido alfa-Linolênico/genética , Ácido alfa-Linolênico/metabolismo
5.
Chem Biol Interact ; 355: 109849, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35150652

RESUMO

A phytochemical investigation of cytotoxic extract and fractions of Cnidoscolus quercifolius Pohl led to isolation of five terpenoids, including three lupane-type triterpenes (1-3) and two bis-nor-diterpenes (4-5). Compounds 4 (phyllacanthone) and 5 (favelanone) are commonly found in this species and have unique chemical structure. Although their cytotoxic activity against cancer cells has been previously reported, the anticancer potential of these molecules remains poorly explored. In this paper, the antimelanoma potential of phyllacanthone (PHY) was described for the first time. Cell viability assay showed a promising cytotoxic activity (IC50 = 40.9 µM) against chemoresistant human melanoma cells expressing the BRAF oncogenic mutation (A2058 cell line). After 72 h of treatment, PHY inhibited cell migration and induced apoptosis and cell cycle arrest (p < 0.05). Immunofluorescence assay showed that the pro-apoptotic effect of PHY is probably associated with tubulin depolymerization, resulting in cytoskeleton disruption of melanoma cells. Molecular docking investigation confirmed this hypothesis given that satisfactory interaction between PHY and tubulin was observed, particularly at the colchicine binding site. These results suggest PHY from C. quercifolius could be potential leader for the design of new antimelanoma drugs.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Diterpenos/química , Euphorbiaceae/química , Proteínas Proto-Oncogênicas B-raf/genética , Tubulina (Proteína)/metabolismo , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/metabolismo , Sítios de Ligação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular , Colchicina/química , Colchicina/metabolismo , Diterpenos/metabolismo , Diterpenos/farmacologia , Euphorbiaceae/metabolismo , Humanos , Melanoma/metabolismo , Melanoma/patologia , Simulação de Acoplamento Molecular , Mutação , Casca de Planta/química , Casca de Planta/metabolismo , Extratos Vegetais/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Tubulina (Proteína)/química
6.
Int J Biol Macromol ; 194: 626-631, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822826

RESUMO

In this work, the effect of Inca peanut seed albumin fraction (IPA) on the rheological, thermal and microstructural properties of native corn starch (NCS) was firstly studied. Compared to the NCS, IPA addition could obviously decrease the transparency of NCS, and the transparency of NCS and NCS-IPA suspensions decreased during the storage time. The textural paraments of NCS pastes with or without IPA reached to the maximum at a concentration of 5%. Steady shear rheological tests showed that all systems were non-Newtonian fluid, and the consistency coefficient (K) values reached to the maximum at 5% IPA concentration. The storage and loss modulus values of NCS-IPA pastes were higher than those of NCS pastes, and curves of loss angle (tan δ) indicated that all pastes were typical weak gel. With the increasing addition of IPA, DSC analysis showed that the thermal properties (To, Tp and Tc) of NCS were significantly changed, whereas, there was no distinct difference in the enthalpy. Microscopy illustrated that there were some wrinkle shrinkage and severe folds on the NCS-IPA granules. Fourier-transform infrared (FT-IR) spectroscopy showed that the hydrogen bonding was primarily interaction forces between IPA and NCS molecules.


Assuntos
Albuminas/química , Euphorbiaceae/metabolismo , Amido , Reologia , Amido/química , Amido/ultraestrutura , Termodinâmica
7.
Plant J ; 108(6): 1735-1753, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34643970

RESUMO

Light quantity and quality affect many aspects of plant growth and development. However, few reports have addressed the molecular connections between seed oil accumulation and light conditions, especially dense shade. Shade-avoiding plants can redirect plant resources into extension growth at the expense of leaf and root expansion in an attempt to reach areas containing richer light. Here, we report that tung tree seed oil accumulation is suppressed by dense shade during the rapid oil accumulation phase. Transcriptome analysis confirmed that oil accumulation suppression due to dense shade was attributed to reduced expression of fatty acid and triacylglycerol biosynthesis-related genes. Through weighted gene co-expression network analysis, we identified 32 core transcription factors (TFs) specifically upregulated in densely shaded seeds during the rapid oil accumulation period. Among these, VfHB21, a class I homeodomain leucine zipper TF, was shown to suppress expression of FAD2 and FADX, two key genes related to α-eleostearic acid, by directly binding to HD-ZIP I/II motifs in their respective promoter regions. VfHB21 also binds to similar motifs in the promoters of VfWRI1 and VfDGAT2, two additional key seed lipid regulatory/biosynthetic genes. Functional conservation of HB21 during plant evolution was demonstrated by the fact that AtWRI1, AtSAD1, and AtFAD2 were downregulated in VfHB21-overexpressor lines of transgenic Arabidopsis, with concomitant seed oil reduction, and the fact that AtHB21 expression also was induced by shade. This study reveals some of the regulatory mechanisms that specifically control tung tree seed oil biosynthesis and more broadly regulate plant storage carbon partitioning in response to dense shade conditions.


Assuntos
Euphorbiaceae/metabolismo , Proteínas de Plantas/genética , Sementes/metabolismo , Triglicerídeos/biossíntese , Arabidopsis/genética , Arabidopsis/metabolismo , Euphorbiaceae/genética , Ácidos Graxos Dessaturases/genética , Regulação da Expressão Gênica de Plantas , Zíper de Leucina , Luz , Ácidos Linolênicos/genética , Ácidos Linolênicos/metabolismo , Filogenia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Sementes/genética , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Árvores , Triglicerídeos/genética
8.
J Chem Ecol ; 47(8-9): 777-787, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34287796

RESUMO

The "River Disease" (RD), a disorder impacting honeybee colonies located close to waterways with abundant riparian vegetation (including Sebastiania schottiana, Euphorbiaceae), kills newly hatched larvae. Forager bees from RD-affected colonies collect honeydew excretions from Epormenis cestri (Hemiptera: Flatidae), a planthopper feeding on trees of S. schottiana. First-instar honeybee larvae fed with this honeydew died. Thus, we postulated that the nectars of RD-affected colonies had a natural toxin coming from either E. cestri or S. schottiana. An untargeted metabolomics characterization of fresh nectars extracts from colonies with and without RD allowed to pinpoint xanthoxylin as one of the chemicals present in higher amounts in nectar from RD-affected colonies than in nectars from healthy colonies. Besides, xanthoxylin was also found in the aerial parts of S. schottiana and the honeydew excreted by E. cestri feeding on this tree. A larva feeding assay where xanthoxylin-enriched diets were offered to 1st instar larvae showed that larvae died in the same proportion as larvae did when offered enriched diets with nectars from RD-colonies. These findings demonstrate that a xenobiotic can mimic the RD syndrome in honeybee larvae and provide evidence of an interspecific flow of xanthoxylin among three trophic levels. Further, our results give information that can be considered when implementing measures to control this honeybee disease.


Assuntos
Acetofenonas/análise , Abelhas/fisiologia , Euphorbiaceae/química , Acetofenonas/farmacologia , Animais , Abelhas/crescimento & desenvolvimento , Dieta/veterinária , Análise Discriminante , Euphorbiaceae/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Larva/efeitos dos fármacos , Larva/fisiologia , Análise dos Mínimos Quadrados , Espectroscopia de Ressonância Magnética , Metabolômica/métodos , Componentes Aéreos da Planta/química , Componentes Aéreos da Planta/metabolismo , Néctar de Plantas/química
9.
J Nat Med ; 75(4): 813-823, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34014467

RESUMO

Skeletal muscle is a major tissue of glucose consumption and plays an important role in glucose homeostasis. Prenylflavonoids, a component of Macaranga tanarius fruits, have been reported to have antioxidant, antibacterial, and anticancer effects. However, the effects of these compounds on skeletal muscle glucose metabolism are unclear. Here, we isolated five prenylflavonoids from M. tanarius fruits, and investigated the mechanism of action of these compounds on skeletal muscle cells using L6 myotubes. We found that isonymphaeol B and 3'-geranyl naringenin increased glucose uptake in a dose-dependent manner. Furthermore, both isonymphaeol B and 3'-geranyl naringenin increased AMPK phosphorylation but did not affect PI3K-Akt phosphorylation. Isonymphaeol B and 3'-geranyl naringenin also increased Glut1 mRNA expression and plasma membrane GLUT1 protein levels. These results suggest that isonymphaeol B and 3'-geranyl naringenin have beneficial effects on glucose metabolism through AMPK and GLUT1 pathway. Isonymphaeol B and 3'-geranyl naringenin may be potential lead candidates for antidiabetic drug development.


Assuntos
Proteínas Quinases Ativadas por AMP , Euphorbiaceae , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Euphorbiaceae/metabolismo , Frutas , Glucose/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Fibras Musculares Esqueléticas , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação
10.
BMC Plant Biol ; 21(1): 191, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879061

RESUMO

BACKGROUND: Cytochrome P450s (P450s) are enzymes that play critical roles in the biosynthesis of physiologically important compounds across all organisms. Although they have been characterised in a large number of plant species, no information relating to these enzymes are available from the genus Fontainea (family Euphorbiaceae). Fontainea is significant as the genus includes species that produce medicinally significant epoxy-tigliane natural products, one of which has been approved as an anti-cancer therapeutic. RESULTS: A comparative species leaf metabolome analysis showed that Fontainea species possess a chemical profile different from various other plant species. The diversity and expression profiles of Fontainea P450s were investigated from leaf and root tissue. A total of 103 and 123 full-length P450 genes in Fontainea picrosperma and Fontainea venosa, respectively (and a further 127/125 partial-length) that were phylogenetically classified into clans, families and subfamilies. The majority of P450 identified are most active within root tissue (66.2% F. picrosperma, 65.0% F. venosa). Representatives within the CYP71D and CYP726A were identified in Fontainea that are excellent candidates for diterpenoid synthesis, of which CYP726A1, CYP726A2 and CYP71D1 appear to be exclusive to Fontainea species and were significantly more highly expressed in root tissue compared to leaf tissue. CONCLUSION: This study presents a comprehensive overview of the P450 gene family in Fontainea that may provide important insights into the biosynthesis of the medicinally significant epoxy-tigliane diterpenes found within the genus.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Diterpenos/metabolismo , Euphorbiaceae/genética , Genes de Plantas , Proteínas de Plantas/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Euphorbiaceae/enzimologia , Euphorbiaceae/metabolismo , Família Multigênica , Proteínas de Plantas/metabolismo
11.
BMC Plant Biol ; 21(1): 160, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33784996

RESUMO

BACKGROUND: Being a promising tropical woody oilseed crop, the evergreen and recurrent plants of Sacha Inchi (Plukenetia volubilis L.) has complex phenology and source-sink interactions. Carbon source-sink manipulations with control and two treatments (reduce source, ca. 10% mature leaf pruning; reduce sink, 10% fruitlet thinning) were conducted on 2.5-year-old field-grown P. volubilis plantation during the early-wet season in a seasonal tropical area. RESULTS: Leaf photosynthetic rate and specific leaf area largely remained unchanged in response to defoliation or defloration. Compared with control, higher N contents on average were observed in both remaining leaves and branches of the defoliated plants, suggesting that N-mobilization was mainly due to the enhanced N uptake from soil. Carbon, but not N, is a source-driven growth process of P. volubilis plants, as defoliation reduced the contents of non-structural carbohydrates (especially sugar) in branches, although temporally, whereas defloration increased available C reserve. The seasonal dynamic pattern of fruit ripening was altered by source-sink regulations. Total seed yield throughout the growing season, which depends on fruit set and retention (i.e., number of matured fruit) rather than individual fruit development (size), was slightly increased by defloration but was significantly decreased by defoliation. Compared with control, defloration did not enrich the KEGG pathway, but defoliation downregulated the TCA cycle and carbohydrate and lipid metabolisms in fruitlets after 24 days of the applications of source-sink manipulation. CONCLUSION: Carbohydrate reserves serve to buffer sink-source imbalances that may result from temporary adjustment in demand for assimilates (e.g., defloration) or shortfalls in carbon assimilation (e.g., defoliation). Defoliation is disadvantageous for the yield and also for carbohydrate and lipid accumulation in fruits of P. volubilis plants. Although more studies are needed, these results provide new insights to the further improvement in seed yield of the strong source-limited P. volubilis plants by source/sink manipulations.


Assuntos
Carbono/metabolismo , Euphorbiaceae/metabolismo , Frutas/crescimento & desenvolvimento , Nitrogênio/metabolismo , Euphorbiaceae/crescimento & desenvolvimento , Frutas/química , Frutas/metabolismo
12.
Toxins (Basel) ; 13(2)2021 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668609

RESUMO

Plant stinging hairs have fascinated humans for time immemorial. True stinging hairs are highly specialized plant structures that are able to inject a physiologically active liquid into the skin and can be differentiated from irritant hairs (causing mechanical damage only). Stinging hairs can be classified into two basic types: Urtica-type stinging hairs with the classical "hypodermic syringe" mechanism expelling only liquid, and Tragia-type stinging hairs expelling a liquid together with a sharp crystal. In total, there are some 650 plant species with stinging hairs across five remotely related plant families (i.e., belonging to different plant orders). The family Urticaceae (order Rosales) includes a total of ca. 150 stinging representatives, amongst them the well-known stinging nettles (genus Urtica). There are also some 200 stinging species in Loasaceae (order Cornales), ca. 250 stinging species in Euphorbiaceae (order Malphigiales), a handful of species in Namaceae (order Boraginales), and one in Caricaceae (order Brassicales). Stinging hairs are commonly found on most aerial parts of the plants, especially the stem and leaves, but sometimes also on flowers and fruits. The ecological role of stinging hairs in plants seems to be essentially defense against mammalian herbivores, while they appear to be essentially inefficient against invertebrate pests. Stinging plants are therefore frequent pasture weeds across different taxa and geographical zones. Stinging hairs are usually combined with additional chemical and/or mechanical defenses in plants and are not a standalone mechanism. The physiological effects of stinging hairs on humans vary widely between stinging plants and range from a slight itch, skin rash (urticaria), and oedema to sharp pain and even serious neurological disorders such as neuropathy. Numerous studies have attempted to elucidate the chemical basis of the physiological effects. Since the middle of the 20th century, neurotransmitters (acetylcholine, histamine, serotonin) have been repeatedly detected in stinging hairs of Urticaceae, but recent analyses of Loasaceae stinging hair fluids revealed high variability in their composition and content of neurotransmitters. These substances can explain some of the physiological effects of stinging hairs, but fail to completely explain neuropathic effects, pointing to some yet unidentified neurotoxin. Inorganic ions (e.g., potassium) are detected in stinging hairs and could have synergistic effects. Very recently, ultrastable miniproteins dubbed "gympietides" have been reported from two species of Dendrocnide, arguably the most violently stinging plant. Gympietides are shown to be highly neurotoxic, providing a convincing explanation for Dendrocnide toxicity. For the roughly 648 remaining stinging plant species, similarly convincing data on toxicity are still lacking.


Assuntos
Euphorbiaceae/efeitos adversos , Irritantes/efeitos adversos , Neurotransmissores/efeitos adversos , Compostos Fitoquímicos/efeitos adversos , Pele/efeitos dos fármacos , Tricomas/efeitos adversos , Urticaceae/efeitos adversos , Animais , Etnofarmacologia , Euphorbiaceae/metabolismo , Evolução Molecular , Herbivoria , Humanos , Irritantes/metabolismo , Neurotransmissores/metabolismo , Compostos Fitoquímicos/metabolismo , Pele/metabolismo , Pele/patologia , Tricomas/metabolismo , Urticaceae/metabolismo
13.
Biomolecules ; 11(2)2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557215

RESUMO

Alchornea cordifolia (Schumach. & Thonn.) Müll. Arg. is a well-known African medicinal plant traditionally used for various healing purposes. In the present study, methanolic, ethyl acetate and infusion extracts of A. cordifolia leaves were studied for their total phenolic and flavonoid contents and screened for their chemical composition. Moreover, the enzyme (acetyl- and butyryl-cholinesterases, α-amylase, α-glucosidase, and tyrosinase) inhibitory and cytotoxicity activities on HepG2: human hepatocellular carcinoma cells, B16 4A5: murine melanoma cells, and S17: murine bone marrow (normal) cells of extracts were evaluated. Finally, components-targets and docking analyzes were conducted with the aim to unravel the putative mechanisms underlying the observed bio-pharmacological effects. Interestingly, the infusion and methanolic extracts showed significantly higher total phenolic and flavonoid contents compared with the ethyl acetate extract (TPC: 120.38-213.12 mg GAE/g and TFC: 9.66-57.18 mg RE/g). Besides, the methanolic extracts followed by the infusion extracts were revealed to contain a higher number of compounds (84 and 74 compounds, respectively), while only 64 compounds were observed for the ethyl acetate extract. Gallic acid, ellagic acid, shikimic acid, rutin, quercetin, myricetin, vitexin, quercitrin, kaempferol, and naringenin were among the compounds that were commonly identified in all the studied extracts. Additionally, the methanolic and infusion extracts displayed higher antioxidant capacity than ethyl acetate extract in all assays performed. In ABTS and DPPH radical scavenging assays, the methanol extract (500.38 mg TE/g for DPPH and 900.64 mg TE/g for ABTS) exhibited the best ability, followed by the water and ethyl acetate extracts. Furthermore, the extracts exhibited differential enzyme inhibitory profiles. In particular, the methanolic and infusion extracts showed better cytotoxic selectivity activity against human hepatocellular carcinoma cells. Overall, this study demonstrated A cordifolia to be a species worthy of further investigations, given its richness in bioactive phytochemicals and wide potentialities for antioxidants and pharmacological agents.


Assuntos
Antioxidantes/química , Euphorbiaceae/química , Euphorbiaceae/metabolismo , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Animais , Antioxidantes/farmacologia , Benzotiazóis/química , Compostos de Bifenilo/química , Carcinoma Hepatocelular/tratamento farmacológico , Biologia Computacional , Avaliação Pré-Clínica de Medicamentos , Flavonoides/farmacologia , Sequestradores de Radicais Livres , Células Hep G2 , Humanos , Quempferóis , Neoplasias Hepáticas/tratamento farmacológico , Melanoma Experimental , Metanol/química , Camundongos , Monofenol Mono-Oxigenase , Fenóis/química , Picratos/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Plantas Medicinais , Ácidos Sulfônicos/química
14.
Molecules ; 26(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572445

RESUMO

Anomalocalyx uleanus (Pax & K. Hoffm.) Ducke (Euphorbiaceae) is a singular species in the genus and is restricted and exclusive to the Brazilian Amazon. A phytochemical study of A. uleanus leaves was performed, yielding the isolation of five major compounds: catechin/epicatechin, afzelin, quercetin 3-O-α-L-rhamnopyranoside, and astilbin. The phytochemical compositions of the methanolic extracts of leaves, roots, bark, and stem bark were determined using a dereplication approach. Forty-six compounds were annotated from the liquid chromatography-mass spectrometry (LC-MS/MS) data, while four lipids were identified using gas chromatography-mass spectrometry (GC-MS). In total, fifty compounds were detected, and they belonged to the primary metabolism and several classes of natural products such as flavonoids, flavonoids O-glycosides, flavonoids C-glycosides, biflavonoids, procyanidin, triterpene, triterpenes esterified with phenylpropanoids, phenylpropanoid derivatives, flavonolignans, coumarins, quinic acid derivatives, and benzoic acid derivatives. This is the first report on the phytochemical data of the genus Anomalocalyx, and the results of this study will contribute to the chemosystematic knowledge of the Euphorbiaceae family and justify the need for investigation of the pharmacological potential of the species A. uleanus.


Assuntos
Euphorbiaceae/química , Euphorbiaceae/metabolismo , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/metabolismo , Extratos Vegetais/análise , Extratos Vegetais/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/análise , Flavonoides/isolamento & purificação , Flavonoides/metabolismo , Frutas/química , Frutas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Espectrometria de Massas em Tandem/métodos
15.
Food Chem ; 337: 127771, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32777564

RESUMO

Faveleira (Cnidoscolus quercifolius) is an emerging Brazilian plant, with seeds rich in edible oil. This study investigates physicochemical properties, chemical composition, thermal and oxidative stability, in vitro and in vivo toxicity, antioxidant, antinociceptive and anti-inflammatory activities of faveleira seed oil. It was observed that the oil has low acidity, value of peroxide, chlorophyll, carotenoids, ß-carotene and high concentrations of unsaturated fatty acids. In addition to presenting thermal and oxidative stability and high total phenolic content, with vanillin, eugenol and quercetin were predominating. The oil showed no toxicity in vitro and in vivo, and presented antioxidant, anti-inflammatory and antinociceptive activities. These findings provide relevant and appropriate conditions for processing of faveleira seed oil as functional food.


Assuntos
Euphorbiaceae/metabolismo , Óleos de Plantas/química , Analgésicos/química , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Antioxidantes/química , Brasil , Carotenoides/análise , Sobrevivência Celular/efeitos dos fármacos , Clorofila/análise , Euphorbiaceae/química , Ácidos Graxos/análise , Masculino , Camundongos , Dor/induzido quimicamente , Dor/prevenção & controle , Fenóis/análise , Óleos de Plantas/farmacologia , Óleos de Plantas/uso terapêutico , Células RAW 264.7 , Sementes/química , Sementes/metabolismo
16.
Sci Rep ; 10(1): 20467, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33235240

RESUMO

Sacha inchi (Plukenetia volubilis L.) is a shrub native to Amazon rainforests that's of commercial interest as its seeds contain 35-60% edible oil (dry weight). This oil is one of the healthiest vegetable oils due to its high polyunsaturated fatty acid content and favourable ratio of omega-6 to omega-3 fatty acids. De novo transcriptome assembly and comparative analyses were performed on sacha inchi seeds from five stages of seed development in order to identifying genes associated with oil accumulation and fatty acid production. Of 30,189 unigenes that could be annotated in public databases, 20,446 were differentially expressed unigenes. A total of 14 KEGG pathways related to lipid metabolism were found, and 86 unigenes encoding enzymes involved in α-linolenic acid (ALA) biosynthesis were obtained including five unigenes encoding FATA (Unigene0008403), SAD (Unigene0012943), DHLAT (Unigene0014324), α-CT (Unigene0022151) and KAS II (Unigene0024371) that were significantly up-regulated in the final stage of seed development. A total of 66 unigenes encoding key enzymes involved in the synthesis of triacylglycerols (TAGs) were found, along with seven unigenes encoding PDCT (Unigene0000909), LPCAT (Unigene0007846), Oleosin3 (Unigene0010027), PDAT1 (Unigene0016056), GPDH (Unigene0022660), FAD2 (Unigene0037808) and FAD3 (Unigene0044238); these also proved to be up-regulated in the final stage of seed development.


Assuntos
Euphorbiaceae/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Euphorbiaceae/genética , Euphorbiaceae/metabolismo , Ácidos Graxos Insaturados/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Análise de Sequência de RNA , Ácido alfa-Linolênico/metabolismo
17.
Fitoterapia ; 146: 104680, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32653491

RESUMO

Euphorbiaceae is a large and diverse family of herbs, shrubs and trees that includes a number of species of considerable economic importance as sources of food, medicines and raw materials. One member of this family, Fontainea picrosperma, is the source plant for the diterpene ester tigilanol tiglate, a natural product recently approved as a treatment for canine mast cell tumours. Here we report the development of reference transcriptomes from root and leaf tissues of F. picrosperma, which include core diterpene biosynthesis genes. A total of ~12 Gb of combined clean reads were generated for assembly into 167,566 contigs with a GC (guanine-cytosine) content of ~41%. Gene ontology showed that 2286 and 2504 transcripts were enriched in the cellular process and 2369 and 2529 transcripts were enriched in the metabolic process categories in leaf and root tissue, respectively. The reference transcriptome contains genes coding for core enzymes involved in common secondary metabolite biosynthetic pathways, including the diterpene biosynthesis pathway within the mevalonate (MVA) and 2-C-methyl-D-erythritol 4- phosphate (MEP) pathways. A phylogenetic analysis using these genes found that F. picrosperma clustered most closely to Jatropha curcas. We found a significantly higher concentration of tigilanol tiglate in F. picrosperma root tissue, which correlated with higher levels of gene expression for enzymes associated with the MVA (6 genes) and MEP (7 genes) pathways, and we hypothesise that the initial stages of tigilanol tiglate biosynthesis occur primarily in the roots of F. picrosperma. This study provides a resource for future gene-related biodiscovery investigations in F. picrosperma and diterpene biosynthesis, in particular for tigilanol tiglate and related macrocyclic diterpenes.


Assuntos
Vias Biossintéticas , Euphorbiaceae/genética , Transcriptoma , Diterpenos/metabolismo , Euphorbiaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Filogenia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Queensland
18.
BMC Genomics ; 20(Suppl 9): 912, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31874634

RESUMO

BACKGROUND: Euphorbiaceae is one of the largest families of flowering plants. Due to its exceptional growth form diversity and near-cosmopolitan distribution, it has attracted much interest since ancient times. SBP-box (SBP) genes encode plant-specific transcription factors that play critical roles in numerous biological processes, especially flower development. We performed genome-wide identification and characterization of SBP genes from four economically important Euphorbiaceae species. RESULTS: In total, 77 SBP genes were identified in four Euphorbiaceae genomes. The SBP proteins were divided into three length ranges and 10 groups. Group-6 was absent in Arabidopsis thaliana but conserved in Euphorbiaceae. Segmental duplication played the most important role in the expansion processes of Euphorbiaceae SBP genes, and all the duplicated genes were subjected to purify selection. In addition, about two-thirds of the Euphorbiaceae SBP genes are potential targets of miR156, and some miR-regulated SBP genes exhibited high intensity expression and differential expression in different tissues. The expression profiles related to different stress treatments demonstrated broad involvement of Euphorbiaceae SBP genes in response to various abiotic factors and hormonal treatments. CONCLUSIONS: In this study, 77 SBP genes were identified in four Euphorbiaceae species, and their phylogenetic relationships, protein physicochemical characteristics, duplication, tissue and stress response expression, and potential roles in Euphorbiaceae development were studied. This study lays a foundation for further studies of Euphorbiaceae SBP genes, providing valuable information for future functional exploration of Euphorbiaceae SBP genes.


Assuntos
Euphorbiaceae/genética , Família Multigênica , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Mapeamento Cromossômico , Euphorbiaceae/classificação , Euphorbiaceae/metabolismo , Duplicação Gênica , Genes de Plantas , Genoma de Planta , MicroRNAs/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Domínios Proteicos , RNA Mensageiro/metabolismo , Sintenia , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
19.
Chemistry ; 25(49): 11574-11580, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31407847

RESUMO

The so-called Securinega alkaloids constitute a class of tetracyclic biologically active specialised metabolites isolated principally from subtropical plants belonging to the Phyllanthaceae family. Following a strategy based on alternative hypotheses for their biosynthesis, an easy and time-efficient divergent synthesis enabled access to twelve of those alkaloids featuring (neo)(nor)securinane skeletons. Moreover, this work permitted to reassign the absolute configurations of (+)-virosine B and (-)-episecurinol A.


Assuntos
Alcaloides/biossíntese , Alcaloides/química , Euphorbiaceae/química , Euphorbiaceae/metabolismo , Mesilatos/química , Conformação Molecular , Estereoisomerismo
20.
Food Chem ; 298: 125045, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31261002

RESUMO

In this study, sacha inchi oil (SIO) (Plukenetia volubilis L.) was microencapsulated via complex coacervation of ovalbumin (OVA) and sodium alginate (AL), and the microcapsule properties were characterized. The omega-3 content in the SIO was evaluated after in vitro gastric simulation and microencapsulation. The coacervate complex between OVA and AL was evaluated based on electrostatic interactions and developed for use as a wall material via the SIO microencapsulation process. The best mass ratio for the biopolymers (OVA:AL) was 4:1 at pH 3.8, and the complex exhibited a thermal resistance at 189.86 °C. The SIO microcapsules showed a high encapsulation efficiency of approximately 94.12% in the ratio (OVA:AL) of 1:1. Furthermore, microencapsulated SIO presented resistance under gastric conditions with a low release of acyl (ω-3) units. These results demonstrate that it is possible to use OVA:AL as encapsulating agents to protect bioactive compounds and to improve the thermal behavior of microcapsules.


Assuntos
Composição de Medicamentos/métodos , Euphorbiaceae/metabolismo , Óleos de Plantas/química , Alginatos/química , Varredura Diferencial de Calorimetria , Cápsulas/química , Euphorbiaceae/química , Ácidos Graxos Ômega-3/química , Concentração de Íons de Hidrogênio , Ovalbumina/química , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...